

https://www.kensu.io/data-observability?utm_source=oreilly&utm_medium=book_ad&utm_campaign=oreilly_whitebook1_chapter1-all_countries-2022_6

With Early Release ebooks, you get books in their earliest
form—the author’s raw and unedited content as they write—
so you can take advantage of these technologies long before

the official release of these titles.

Andy Petrella

Fundamentals of Data
Observability

Implement Trustworthy End-to-End
Data Solutions

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-13323-8

Fundamentals of Data Observability
by Andy Petrella

Copyright © 2023 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com .

Acquisitions Editor: Jessica Haberman
Development Editor: Gary O’Brien
Production Editor: Ashley Stussy

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

July 2023: First Edition

Revision History for the Early Release
2022-06-14: First Release
2022-08-01: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098133290 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Fundamentals of Data Observability,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author(s) and do not represent the publisher’s views.
While the publisher and the author(s) have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author(s) disclaim all responsibil‐
ity for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098133290

Table of Contents

1. Introducing Data Observability. 5
The evolution of data teams 6
Challenges with current data management practices 9

Effects of Data Governance at Scale 10
Challenges of Scaling Data Teams 11

Segregated Roles and Responsibilities and Organizational Complexity 13
Anatomy of data issues and consequences 15
Impact of data issues on data team’s dynamics 17
Scaling AI Roadblocks 21

Data Observability to the Rescue 23
The areas of Observability 24

How data teams can leverage Data Observability now 27

2. Components of Data Observability. 31
Channels of data observability information 32

Logs 32
Traces 32
Metrics 33

Observations model 34
Physical Space 36
Server 36
User 36
Static Space 37
Dynamic Space 44

Expectations 48
Rules 49
Automatic anomaly detection 53
Prevent Garbage In - Garbage Out 55

iii

CHAPTER 1

Introducing Data Observability

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
author at gobrien@oreilly.com.

Over centuries and across industries, we have witnessed strategies using data trans‐
form until its rapid growth, and associated capabilities (e.g., ML), have led to data
becoming the strategy itself.

Although they used to call themselves “data-driven” companies (and many still do), in
a sense, all organizations aim to become a data company. Data is perceived as an asset,
it can be seen as a product that can generate value for the business. Hence, limiting a
company strategy to only becoming “data-driven” reduces the competitive advantage
the company would have in the market.

For an organization to become a data company, they need to consider several trans‐
formations. One of them is their ability to scale their capacity to operationalize the
generation of value from data - this has led to identifying a market gap called data
operations (DataOps).

Improving data operations means you have to reduce the time to market – the time
between discovering a potential data value and its availability for the consumers, a.k.a

5

1 Mary K. Pratt, “CIO (Chief Information Officer),” TechTarget, accessed April 11, 2022.

time to value. Then you have to maintain this value at the lowest possible cost – the
resources needed to keep the existing consumers satisfied and extend the new ones.
This is linked to the total cost of ownership, and one of the key factors is the cost of
quality assurance – the data quality.

Managing the data quality is the most important barrier for organizations to scale
data strategies due to a lack of ability to identify issues and remediate them appropri‐
ately.

Data quality is not a new topic. Patterns or solutions that existed to address are
not suited to cope with the scalability effect introduced with DataOps. Only event
considering tools such as notebook deployment in Databricks or DBT, integrated
with automated tests, the time to deliver data projects has shrunk so that data teams
can create data much faster. Consequently, the number of data projects continually
grew, but also their complexity Therefore when a data issue is detected, finding its
cause is so challenging that the only option is to patch the data, which disrupts the
data value chain, and generates debts.

Data Observability introduces new approaches, best practices, and capabilities that
are needed to create the necessary visibility about data for companies to scale their
data ambitions.

Before I dig further into what data observability is and offers at scale, let’s first look at
how data teams are evolving in and identify the challenges they face.

The evolution of data teams
To support the scaling of data value, data teams have started to play a critical role in
the implementation of incorporating data into business operations.

This evolution of data teams is similar to how IT teams evolved in the 1950s1—when
dedicated teams and roles were created to incorporate computing into business
operations.

Looking at Google Trends (Figure 1-1) of the term “data team” from 2004 to 2020,
we can see that while data teams have always been around, the interest in data teams
began increasing in 2014 and accelerated significantly between 2014 to 2020.

6 | Chapter 1: Introducing Data Observability

https://www.techtarget.com/searchcio/definition/CIO#:~:text=The%20role%20of%20the%20CIO,half%20of%20the%2020th%20century.

2 Cf What is Data Observability report

Figure 1-1. Google search trend for “data team”.

This is despite the fact that interest in “Big Data” began to decrease (as shown in
Figure 1-2).

Figure 1-2. Analysis of “Big Data” search term on Google Trends2

Obviously, this doesn’t mean that Big Data was not needed anymore, but, as Fig‐
ure 1-3 shows, in 2014 the focus started to shift toward Data Science because of its
link with value-generation was more intuitive.

The evolution of data teams | 7

Figure 1-3. Google trends for search terms “data engineer” and “data scientist”.

However, even as interest began to climb in data science, it was clear that data
availability was a roadblock to many data science projects.

The big data teams have not been replaced by data science teams. Instead, data teams
have embraced analytics, and thus added this relatively new role of Data Scientist.

As data and analytics became more central to companies’ success, providing the right
data to the right people remained a constant challenge. Gartner noted that, starting
in 2018, data engineers had become crucial in addressing data accessibility challenges
and that data and analytic leaders must, therefore “develop a data engineering disci‐
pline as part of their data management strategy.”

Hence, it became evident that a role dedicated to producing the data for downstream
use cases was missing. This is why, since around 2020, as companies began to bring
on engineers specifically to help build data pipelines and bring together data from
different source systems, the search volume for data engineers has increased signif‐
icantly. . Today, as also shown by Figure 1-3, data engineering is trending toward
catching up to data scientist in search popularity.

Data availability is still not fully solved (at the time of writing),
because the underlying reasons are still valid. Data sources (opera‐
tional) are not entirely known, ingesting highly valuable business
data from legacy systems also faces organizational resistance (for
security, performance, or compliance reasons). But the separation
of roles allows the different skills to build and the resources to be
focused on the different phases of data projects.

8 | Chapter 1: Introducing Data Observability

3 The global data management community
4 DAMA-DMBOK: Data Management Body of Knowledge v2

Search trends are just one example that illustrates the creation and scaling of data
teams. Additionally, these search trends highlight how these data teams started to
become more organized with members that each has their own specialty and scope of
responsibility to implement new products and services based on data.

Challenges with current data management practices
As with any transformation of a company, data transformation and the associated
creation of data teams posed the question of the teams’ location within the organiza‐
tion. Should there be one central data team? Should it be in IT? Or, maybe there
should be one data team per business domain? Should they be under IT, in each
domain? But then, how do they collaborate and how do they stay consistent, and
efficient? Et cetera, et cetera.

Those questions are being addressed in a large number of ways, however, Data Mesh
is one of the few (not to say the only one) that addressed them by rethinking data
management at all levels including at the architecture, culture, and organization level.

However, independently of the position of data teams in the structure, let’s analyze
the impact on data management when they are scaling.

Data management is a vast topic that is widely defined in the literature, for this
analysis I will concentrate on how data management is defined by DAMA3 in their
Data Management Body of Knowledge v2 (DMBOK2)4 book.

In DMBOK2, data management is composed of many areas, such as Data Architec‐
ture, Metadata, and Data Quality. All those areas are participating in leveraging the
value of the data, alongside Data Governance which is meant to dictate the policies
that must be respected to ensure the data value is generated efficiently and according
to the core principles of the organization. This is very well represented in the Data
Management Wheel of the framework, see Figure 1-4.

Challenges with current data management practices | 9

https://www.dama.org/cpages/home

Figure 1-4. Data Management Wheel from DMBOK2

As data ambitions and data teams scaled, each area of the wheel has evolved to adapt
to the different situations and needs. In fact, in the next section, I will cover how the
increase in the importance of Data Governance is impacting the others.

Effects of Data Governance at Scale
Many challenges are resulting from the evolutions of data management practices and
technologies, but I’ll concentrate on one specific challenge: how to control at scale
that the data culture is sustained, by respecting not only the data governance princi‐
ples but also the definition and the implementation of the resulting policies. Data
governance defines the policies and each area is responsible for defining, planning,
and executing the implementation.

However, at the implementation, many dependencies across areas are introduced,
plus the fact that everything scales, without a harmonized, defined, and global control
layer, any area that presents a default can break the machine.

This is why I am proposing to not necessarily change the abstraction presented in this
picture but to extend it with an extra area, as centric to data governance, but extrinsic
to it.

This Data Observability, which will be formally defined in a later section, “The areas
of Observability,” makes the responsibility explicit to bridge the culture, its principles,
and policies with its implementation and respect across all other areas.

The result is presented in Figure 1-5. below, however, it doesn’t mean there is neces‐
sarily a need for a data observability role, team, or division. It states that at scale, the

10 | Chapter 1: Introducing Data Observability

control must become explicit as it becomes a challenge that, at a lower scale, it could
have been handled in a more ad-hoc fashion.

Figure 1-5. Data Management Wheel extended with Data Observability

In the remainder of this book, we’ll look at how observability extends from the IT
DevOps landscape and how to apply it to data and data teams.

To understand why data observability is crucial and must be embraced, we’ll consider
how data teams are evolving over time, the impacts on the culture, the distributed
responsibilities within data teams, and the many challenges that must be addressed
and strategies applied to keep data teams effective.

Challenges of Scaling Data Teams
As companies look to scale their data usage, they also must scale their data teams. In
this section, I will take you on the journey of growing data teams and highlighting
why automation becomes essential.

Consider a data team that starts with a single person tasked to do the data ingestion,
data integration, and even the final report. For this person, a first project might
consist of producing a view of recent customer acquisitions.

The data engineer would have to query and ingest the source data from the compa‐
ny’s Customer Relationship Management (CRM) system into the data lake, integrate it
into the data warehouse, and create a report that gives the head of sales insight into
the progress of the sales made over the past few weeks.

This first data team member is, in essence, a Swiss knife: covering both data engineer‐
ing and data analysis responsibilities in order to deliver the project outcome (report).

Challenges of Scaling Data Teams | 11

In a larger data team, the skills required for this work are balanced between data
engineering, data analysis, and business analyst. As a team of one though, the person
must master the technologies required to build and run the pipeline, reporting tools,
and understand business KPIs. It is worth noting that each of these areas requires
specific expertise.

So far this person is happy, and the scope of work and responsibilities is as shown in
Figure 1-6.

ERP

Pipeline

Report

Figure 1-6. A happy single-person data team and its work.

Of course, the process is not quite as simple as depicted above. For example, there
should be an entire systems development life cycle (SDLC) to be followed to get the
data into production and allow it to be available for analysis by the final user. At a
very high level, however, this basic process outlined is what we mostly think of as
“producing value” with a data project.

With only one team member and one data project, the whole data ecosystem is
relatively under control.

The process is simple enough for one person and the responsibility for the entire
project is also attributed to a single person. Because there is just a single person on
the team, they also have a close relationship with the business stakeholders—such
as the head of sales—and have therefore built some domain knowledge around the
use case and the business objective of the project. While this role is typically what a
business analyst would perform, in this case, the data engineer takes on this role as
well.

Thus, if any issues are raised by the user, it is clear who should work on troubleshoot‐
ing. After all, he not only executed each step of the process but has knowledge of each
area of the process.

However, as stakeholders become aware of the potential and value data can provide,
more requests are made to this person for new reports, new information, new
projects, and so forth. As a result, there is an increase in the complexity of the
demands and ultimately, the individual reaches their limits of production capacity
under the current setup. Consequently, it becomes urgent to grow the team and invest
in specialized members to optimize productivity.

In the next section, we’ll see how this team starts growing as specific roles are created,
such as data engineers responsible for providing the data to analysts, data scientists

12 | Chapter 1: Introducing Data Observability

5 https://quanthub.com/data-engineer-demand/

for building analytics and AI/ML models, and data analysts for interpreting the data
for the business team’s use cases. The team members are working together to respond
to business users’ requests who will use the insights to make business decisions. See
Table 1-1 for the responsibilities and dependencies of each role.

Table 1-1. Data Team (extended) roles, responsibilities, and dependencies
Title/Role Responsibilities Dependencies
IT team/
Production
and operation

Build and maintain the platform; manage security and
compliance; oversee site reliability engineering (SRE)

Receives recommendations from other teams
about what to monitor and what to consider
as an error.

Data Engineer Build the data pipelines and manage the data from
deployment to production

Relies on IT to build the platform and set
up the tools to monitor the pipeline and
systems, including data observability tools

Analytic/data
science

Build analytics and AI/ML models that can analyze and
interpret data for the business team’s use cases

Rely on the data team to build the pipeline
to generate the data they will be using in
their models

Business/
Domain

Sponsor use cases and use data analysis to make business
decisions

Rely on the other teams to ensure data and
analyses are accurate

There is also a shortage in data engineering, data science, and data analyst skills on
the market, hence growing a team is extremely challenging5.

This is especially true at the beginning when everything needs to be built in parallel,
such as the culture, the maturity, the organizational structure, etc. Thus, it becomes
even more essential to keep the talent you do have and this means ensuring that their
roles and responsibilities align with their skillsets. So, in the next section, we will
discover how these roles are added, what they will be expected to do, and what will
happen to the team over time.

Segregated Roles and Responsibilities and Organizational Complexity
The single-person team has reached its maximum capacity to build new reports and
has added another member to get back on track with the pace of the incoming
requests. As stated earlier, it is important to specialize the team members to maximize
their output, satisfaction, and, of course, quality of work. So we have now, a data
analyst delivering the reports defined with the stakeholders, upon the data sets built
by a data engineer.

The impact of segregating the roles is that the data engineer is now farther from
the stakeholders and loses direct contact with the business needs. In a way, the data
engineer loses part of the visibility about the final purpose of the project as well as
part of the responsibility for the final outcome. Instead, the engineer will focus all

Challenges of Scaling Data Teams | 13

https://quanthub.com/data-engineer-demand/

efforts and energy on their own deliverables—the ETL, SQL, or whatever framework
or system was used to build the data.

The team and its deliveries are represented in Figure 1-7, where we clearly see the
distance and the dependencies taking place.

Figure 1-7. The team is growing, the complexity as well.

Figure 1-7 also shows the scope of produced work under the management by the data
team after a few projects have been delivered. The data ecosystem begins to grow,
and there is less end-to-end visibility, as it is scattered across both brains, and the
responsibility across team members starts siloing.

Next, a data scientist is added to the team, as stakeholders are willing to explore
automated decision making without necessarily having a human in the loop, or
overseeing the results and to scale the value generated by the data.

As shown in Figure 1-8, this adds more scale, and those projects will require more
data at a faster speed, and more complex as the whole process needs to be automated
to generate the expected results.

Figure 1-8. Data team evolving toward the use of automated decision making with AI

14 | Chapter 1: Introducing Data Observability

6 https://storage.googleapis.com/pub-tools-public-publication-data/pdf/
0d556e45afc54afeb2eb6b51a9bc1827b9961ff4.pdf

7 https://www.dnb.co.uk/content/dam/english/dnb-data-insight/
DNB_Past_Present_and_Future_of_Data_Report.pdf

As time passes and the whole system scales issues inevitably begin to occur As noted
in the Google paper, Data Cascades in High-Stakes AI6 there is a 92% prevalence for
at least one data issue to happen in any project.

Because the system has evolved so much and so rapidly, these issues are hard to
troubleshoot and resolve. What is happening? No one knows, in fact.

The lack of visibility within the system combined with its complexity makes it like a
complete black box, even for those who built it (some time ago).

The organization’s data ecosystem, see Figure 1-9, has become like a “legacy system”
in IT—only it happened faster.

Figure 1-9. Efficient data team delivering projects in production after some time

In further sections, I will drive you throughout the journey of handling those issues
and their consequences on the data teams’ dynamics. Although, before that, let’s
analyze what is the anatomy of such data issues.

Anatomy of data issues and consequences
Data issues are a constant and common challenge for most organizations. In one
survey by Dun and Bradstreet7, 42% of businesses said they have struggled with
inaccurate data.

Data issues can be caused for any number of reasons, but the most common are:

Challenges of Scaling Data Teams | 15

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/0d556e45afc54afeb2eb6b51a9bc1827b9961ff4.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/0d556e45afc54afeb2eb6b51a9bc1827b9961ff4.pdf
https://www.dnb.co.uk/content/dam/english/dnb-data-insight/DNB_Past_Present_and_Future_of_Data_Report.pdf
https://www.dnb.co.uk/content/dam/english/dnb-data-insight/DNB_Past_Present_and_Future_of_Data_Report.pdf

Regulatory
Changes in data privacy or other data regulations may require changes in how
data is collected, ingested, or stored, which can create unforeseen issues.

Business demands
Different business use cases may require different configurations of the data.
One business use case may not require the use of addresses, for example. So, a
business user may request that the address column be removed from the data.
However, someone else using the same dataset may need addresses for their use
case, so their analysis is now incorrect when this information is left off the data.

Human error
Often, data issues are caused by simple human error—someone accidentally
deletes a field or column without realizing it. The data then becomes inaccurate,
missing, or incomplete.

One of the most challenging aspects of what causes a data issue is that those involved
in creating the change to the data or application often don’t realize the implications of
the changes they’ve made. And, unfortunately, the issue isn’t usually discovered until
the end of the data value chain.

Usually, as we discussed in the scaling data team story, it is business users who
are running reports and realizing through a gut feeling and their own previous
experience using the data that the numbers “don’t look right.”

But, at that point, it’s already too late. Business decisions may have already been made
based on faulty data before the inaccuracies were discovered.

With no time to fix data issues, data teams scramble to figure out who has the
knowledge and skills to help resolve the issue. Yet, it’s often not even clear who is
responsible or what knowledge and skills you need to address the issue. Analysts?
Engineers? IT?

And the responsibility can change from one moment to the next. Perhaps the analyst
made a change in how some information is calculated that is now impacting the sales
reports, but perhaps even before that, the data engineering team adjusted one of the
connections supporting the sales analytics tool the business users use to run the sales
reports.

To try and resolve the issue, everyone is relying on everyone else’s memory about
what they did or didn’t do and are manually trying to find and fix the issue. No one
has a clear understanding of what fields or tables affect downstream data consumers,
and the only notifications they have set up are basic failure alerts.

The expense and time involved to resolve the issue and its negative impact on
businesses’ productivity, sales, overall revenue, and even reputation are significant.

16 | Chapter 1: Introducing Data Observability

8 https://www.dnb.co.uk/content/dam/english/dnb-data-insight/
DNB_Past_Present_and_Future_of_Data_Report.pdf

The Dun and Bradstreet8 report also tells us that almost one in five businesses has lost
customers due to incomplete or inaccurate data. And, nearly a quarter of companies
say poor quality data has led to inaccurate financial forecasts.

Constant data issues can lead to a lack of confidence in making business decisions
based on data insights. In a recent study of 1,300 executives, 70 percent of respond‐
ents said they aren’t confident the data they use for analysis and forecasting is
accurate.

Impact of data issues on data team’s dynamics
First and foremost, the data issue is detected by the user of the data who starts having
doubts because either the data received seems odd compared to what was expected, or
the results of the analyses are not what was anticipated.

This case could happen even if the data has no “issues”, because the
data changes naturally as it represents the reality, which changes
without notice - and so the user might not yet be aware. However,
for simplicity, I will assume for the remaining of this study that the
issue is real.

Figure 1-10 depicts the current situation, where one of the consumers is starting to
have concerns about the data, and who imagines that the issue just discovered may
have other, yet to be discovered, consequences in some or all applications that use it
(a.k.a. data cascade, issue propagation, …).

Figure 1-10. A user not cool about what has been discovered, a data issue

Challenges of Scaling Data Teams | 17

https://www.dnb.co.uk/content/dam/english/dnb-data-insight/DNB_Past_Present_and_Future_of_Data_Report.pdf
https://www.dnb.co.uk/content/dam/english/dnb-data-insight/DNB_Past_Present_and_Future_of_Data_Report.pdf

In this scenario, users always detect issues at the wrong moment for them. They need
the data at that moment, otherwise, they wouldn’t be accessing or checking the data
anticipatively.

So the user is stuck and of course, becomes grumpy. Indeed, instead of working on
the tasks that were planned, the user has to find out how the data will be “fixed”.
Consequently, the delivery of the tasks is delayed, which is going to impact the
stakeholders.

Moreover, finding how the data can be fixed is not straightforward as the received
data might have been corrupted by any of the applications that produce it. At this
point, the process to follow depends on how the (data) operations are organized, for
example, creating an “incident” (a ticket) with a comment “data is not right ߘߘ please
fix ASAP”.

Eventually, the data has a data steward attributed to it. The data steward has the
responsibility to unblock the user (at the very least) and to analyze the potential other
consequences, which may result in more incidents.

To resolve such an incident, the data steward will have to involve the producer (or
the producers…) who will need time to diagnose the symptoms and elaborate on a
solution.

Well, this sounds easier than it really is. The incident needs to be reassigned to the
producer, who is probably already busy with ongoing projects and unlikely to identify
(the issue) instantly. That’s assuming they are even the right producer!. Instead, all
producers will be contacted, probably summoned in a meeting, to understand the
situation. They will challenge the “issue” (e.g., “are you sure this is an issue”?), and ask
for more details, which loops back to the already angry user (who is most likely not
going to be very cooperative).

Consequently, the applications that are touching this data and identified as potential
culprits have to be thoroughly analyzed, which involves those tasks:

• Access to the production data to manually verify and understand the data issue•
by running a series of exploratory analyses (e.g., queries, aggregation computa‐
tions in spark, …). Given that, the grant to access the data might not be granted
yet.

• Repeating this operation by time-traveling the data (when possible) to identify•
when the issue started to show up (e.g., a delta table can help to do the time-
traveling, but still the time needs to be found).

• Access to the production logs of the applications (by SSHing on the machines or•
from the logging platform), to analyze its behavior and even review its history
(version, etc), in case the application business logic has changed so did the

18 | Chapter 1: Introducing Data Observability

results. Given that, like for data access, the logs might require special grants to be
accessible.

• Analyze the business logic to trace back to the data consumed by the applications•
to identify potential data cascades (issue propagation).

• Repeat until the root cause is found, which data and applications need some•
repair, and finally execute the back-filling (to reestablish the truth).

Easy peasy, right?

So, let’s be honest, because time is critical (remember, the user is upset), it is likely
that the root cause won’t be tracked but either one of these two temporary-definitive
patches will be applied:

• Run an ad-hoc script (or so-called data quality tool) to “fix” the data: which is•
totally getting the process out of control (e.g., outside the lifecycle of the data,
etc.).

• Update one of the applications to “clean” the received data: which is fixing the•
problem locally and is likely to have awkward side effects; such as removing or
imputing null values that would change the distribution of the variables if the
number grows up and have side effects downstream (e.g., bad decisions…).

In fact, this process, called “troubleshooting”, has puzzled many people, many of
who weren’t even needed for this incident. It is worth noting that while the trouble‐
shooting was happening the scope of the issue has grown significantly, as shown in
Figure 1-11.

Figure 1-11. People involved in the incident analysis (troubleshooting)

Moreover, the issue detected on this data may have other consequences (remember,
data cascades!) on other projects, users, and decisions. Which has the effect to expand
further the scope of the issue to all usages of the data.

Challenges of Scaling Data Teams | 19

Another process called impact analysis is somewhat close to the troubleshooting
we’ve just covered, however, its goal is slightly different, as it is aiming to prevent
issues or communicate them.

In fact, not only is the goal different, but an impact analysis is also much trickier and
more sensitive because it requires requesting time from all users to check their data,
results, analyses, or decisions.

Even worse, some may discover that decisions were wrong for a longer period of
time, potentially as long as the issue has appeared, everything happened silently.

At this point, the scope of the data issue, considering both the troubleshooting and
the impact analysis, is as big as Figure 1-12 shows. And the data steward has to
resolve this as fast as possible.

Figure 1-12. The scope to resolve a data issue.

This is why we call data a “silent killer.” It slowed everyone down, destroyed all trust,
generated stress, anger, and anxiety without raising any alerts, or “exceptions” (as in
software). In fact, data doesn’t raise alerts, or exceptions yet, because there is a way to
enable this capability we will see in the next chapter.

In this analysis, I have essentially highlighted the challenges around the time and the
people involved in the process and the significant efforts wasted on ad hoc patching
which just creates more technical debt. Despite the importance of those challenges,
there is another inestimable resource that we lost instantly at the time when the issue
was detected: trust in both the data and the data team.

This trust took months if not years (e.g., for sensitive AI-based projects) to build, but
because nothing has been anticipated to maintain it, it fell apart like a house of cards,
within seconds. This kind of scenario and the resulting consequences on the general
mood lead to discouragement and turnover of highly talented team members.

Hence, we can identify many questions raised throughout the incident management
process that are mood-destructors:

20 | Chapter 1: Introducing Data Observability

• Who is responsible for this issue?•
• Why am I the one that:•

— Discovers the problem?—
— Is being questioned about it?—

• Why is the user telling me the data seems inaccurate?•
• Is really the data inaccurate?•
• What apps could be causing this?•
• What upstream data could be the cause?•
• What are the unknown consequences of this issue (i.e., what other projects is this•

data used in that could also be impacted)?

Understanding why these questions are raised allows us to identify the very source
of the problem, and it goes beyond any data issues and their causes. The challenge
to address is not data itself, it is the lack of clarity about accountability and responsi‐
bility across the data team members and stakeholders, strengthened by the lack of
visibility into the data processes in the wild (i.e. production, during its use).

Consequently, when the questions are raised by or to data teams, they create and
reinforce barriers at the creation of value using data as they will:

• Take significant time to resolve during which the data is still unusable by the•
consumer.

• Require significant energy and imply that there is a diminished capability to•
solve the problem at the source and that a local “patch” will be the likely default
solution.

• Provoke anxiety and exacerbate the loss of confidence in deliverables, data, and•
suppliers.

This is where data observability plays a key role—helping to generate greater visibility
into the health of the data and the data ecosystem and better assign (distribute,
decentralize) both accountability and responsibility.

Scaling AI Roadblocks
In the previous section, we covered the challenges that appear when scaling data
teams. In this section I will focus on one of the most critical achievements that any
organization is expecting from their data teams, scaling their AI capabilities.

However, these same types of visibility challenges that limit value when issues arise
also create significant challenges when it comes to implementing AI.

Challenges of Scaling Data Teams | 21

In an analysis performed by Gartner see Figure 1-13 the most important roadblocks
faced by companies in developing their data and AI programs included data volume
and/or complexity, data scope or quality problems, and data accessibility challenges.

Figure 1-13. Gartner survey’s results about AI Roadblocks

The good news is that data observability helps with these roadblocks, but before we
get into how, let’s look a bit deeper at what the primary barriers are and why.

The survey results indicate that technology-related challenges account for 29% of
issues and the complexity of existing infrastructure accounts for 11% of the issues.
Interestingly, almost half (48%) of respondents selected challenges that have a rela‐
tionship with a lack of visibility due to the complexity of the system in place and a
lack of clarity on who was responsible for remedying the issues.

Let’s take a look:

Security/privacy concerns or potential risks or liability
Nearly one-fifth (18%) of respondents to Gartner’s survey picked these issues as
their biggest barrier to AI implementation. Security of risk management is all
about knowing who, why, and for what purpose the data will be used for. There
is also a potential risk or liability if the outcomes from the data are inaccurate
because the data itself is wrong and lead to bad business decisions. Finally, there
is concern that the outcome may not meet certain ethical constraints.

Data volume and complexity
This issue was the top barrier for 8% of respondents. The complexity and the size
of data require a lot of experimentation to understand and derive value from the
data. Because of a lack of visibility on experimentations that were performed such

22 | Chapter 1: Introducing Data Observability

as profiling and wrangling, these experimentations are repetitive on the same big
and complex datasets–This takes time and effort.

Data scope and quality
For 6% of respondents, data quality issues were the top barriers. If the data
quality is unknown, then it’s very difficult to have any confidence in the outcome
or final results produced from the data.

Governance issues or concerns, lack of understanding of AI benefits and uses, and
difficulty finding use cases

A total of 16% of respondents felt that one of the above issues was the biggest
challenge in implementing AI. Data governance is a big issue because documen‐
tation is manual and time-consuming, which means it’s not always done properly
and therefore its overall impact and value are not always apparent. But without
good data governance, the quality of the data fed into AI algorithms could be
impacted, and without visibility on the quality of the data, stakeholders may
worry about the security of the data and whether the AI outputs are accurate.

So far, I have taken you on the journey of scaling data teams and AI, and we have
identified several challenges such as lack of visibility (data pipelines, data usages,
…), of clarity about responsibility and accountability, resulting in distrust and chaos,
leading themselves to loss of interest or confidence into data ambitions. In the
next section, I will describe what data observability is, and how this approach and
capability solve those challenges.

Data Observability to the Rescue
Up to this point, I’ve discussed the challenges faced by data teams as they grow and
the roles a lack of visibility and clear responsibilities play in making it difficult for
organizations to scale their data and analytics strategies.

However, this is not the first time we’ve encountered such challenges, the closest
example is in IT when it scaled rapidly, which led to developing the DevOps culture.

DevOps has evolved over the years, as more IT practices (e.g., the service mesh) have
required more best practices and associated tooling to support them efficiently.

The most well-known example of such best practices is probably CI/CD but also
observability at the infrastructure or application level has become part of any archi‐
tecture to give more visibility and confidence in their applications and systems while
also speeding time to market and reducing downtime.

Associated markets have therefore emerged and grown to support these observability
requirements. There are a variety of companies that have developed DevOps-related
services and technologies at all levels of maturity of the IT environment (e.g., Data‐
dog, Splunk, New Relic, Dynatrace, etc.).

Data Observability to the Rescue | 23

In IT, “Observability” is the capability of an IT system to generate behavioral infor‐
mation to allow external observers to reconstruct (modelize) its internal state. By
extension, continuous observability allows an external observer to continuously mod‐
elize the internal state.

Fundamentally, an observer cannot interact with the system while it is functioning
(e.g., we can’t log onto the server), it can only observe information that can be
perceived, which are therefore called “observations”.

Now, let’s discuss now what those observations are.

The areas of Observability
An IT system is complex by nature as it is composed of several categories that can
drastically expand in number, such as infrastructure, cloud, distributed, machine
learning, deep learning, etc.

In this book, however, I’ll stop at getting too granular, but will aggregate the cate‐
gories of an IT system that can be “observed” into several areas, and one of them is
related to data, as represented by Figure 1-14.

24 | Chapter 1: Introducing Data Observability

Figure 1-14. Areas of IT Observability

These areas are not totally independent of each other, as they have a lot of interac‐
tions to encode the complexities of the system. This is why a Venn diagram seemed to
be the best representation.

Before covering in detail the “data” area, the “data observability” then, let’s review the
others briefly first:

Infrastructure
Using infrastructure log metrics you can infer the performance characteristics
associated with internal infrastructure components. Proactive actionable alerts
can be set when there is a failure or certain performance parameters aren’t met.

Application
Observing application endpoints, versions, open threads, number of requests,
exceptions, etc., can help determine how well the application is performing and
identify if or why there are issues.

Data Observability to the Rescue | 25

User/Purpose
It is useful to understand and “observe” who is using or implementing applica‐
tions, what the purpose of a project is, and the goal of the project. This helps
to understand the most frequent projects or goals, detect duplicated efforts, or
compose centers of expertize.

Analytics
Observing analytics, from simple transformations to complex AI models, helps
identify and learn from the ongoing usages of data and the insights generated
from them.

Security
Observing security-related operations such as modifications of grant accesses or
roles, or metrics on which roles are used more often than others, gives visibility
on the efficiency of the security and areas of improvement.

Some of the above areas have already been covered largely in the DevOps literature,
however, we are focusing specifically on data observability. Therefore, we conclude
that data observability can be defined as such:

Data Observability is the component of an observable system that generates infor‐
mation on how the data influences the behavior of the system and conversely. An
observable system is a system having the “Observability” capability.

It is worth noting that Gartner has defined data observability as the following, which
aligns well with the above definition:

Data Observability is the ability of an organization to have a broad visibility of its data
landscape and multi-layer data dependencies (like data pipelines, data infrastructure,
data applications) at all times with an objective to identify, control, prevent, escalate
and remediate data outages rapidly within acceptable data SLAs.
Data observability uses continuous multi-layer signal collection, consolidation, and
analysis over it to achieve its goals as well as inform and recommend a better design
for superior performance and better governance to match business goals.

The Gartner definition also discusses how data observability can be used (e.g. prevent
issues). However, I didn’t include this as part of my definition because I want to focus
on what it is not what it does (also, I don’t define an apple as a fruit that can satisfy my
hunger).

That said, it is important to know the benefits of data observability. We’ll dive into
data observability use cases in more detail in the next section.

Nevertheless, both Gartner and I agree that there is an important “multi-layer” or
“multi-area” component to be taken into consideration. I have, however, used the
term “areas” because layers imply there is some independence, which, in reality, is not
the case.

26 | Chapter 1: Introducing Data Observability

From this definition, we can look at the dimensions composing data observability as
a result of its interactions with the other areas of observability.

I will start with the main dimension formed from observations related to the sole
dataset. These are the core, or intrinsic, observations. They are essentially metadata
such as the fields (e.g., columns, JSON attribute), the format (e.g., CSV), the encoding
(e.g., UTF-8), and to some extent, the definitions of the information available.

They allow an observer to understand (mainly) the structure of the data and how it
changes over time.

If we were to stop here, we wouldn’t be able to leverage data observability to its
maximum capacity. For this, we must connect those core observations to the other
areas to give the observer the following benefits.

Infrastructure
Identify where the data resides physically (e.g., file path on a server, the server
hosting a database - ideally its connection string), and it could impact the data
itself or the other areas cited below.

Application
Be aware of what components are storing or using the data (e.g., a transformation
script, a web service), it could also include the code repository and the version.

User/Purpose
Contextualize and ease the knowledge handover with information about how
was involved in the data production or consumption, its security settings, and in
which projects (which have purposes) the data brings show value.

Security/Privacy
Control how liable and appropriate are the data collections, accesses, and usages.

Analytics
Understand how value is created with the data, through transformation (lineage),
AI (machine learning training, predictions, …), or even simply migration.

As for any new concepts, especially those that touch the organizational culture,
ways of working, and technologies, it is crucial to understand their use cases.
Therefore, in the next section, I will cover the most common and valuable data
observability use cases.

How data teams can leverage Data Observability now
The main use cases of Data Observability are currently oriented towards data issue
management. However, as data continues to proliferate and its uses expand, there will
be many more use cases to come.

How data teams can leverage Data Observability now | 27

Low Latency Data Issues Detection
The more synchronized data observability is with the application (its usage context),
the smaller the delay between the issues and their detection will be. In fact, data
observability can be leveraged at the exact moment of data usage to avoid any lags
between monitoring and usage. This will allow you to detect data issues as quickly as
possible, helping you to avoid having data users find issues before you.

Leveraging data observability this way reduces the time to detect (TTD) issues as data
engineers are alerted in a timely manner because any data usage issues are observed
in real-time (aka synchronized observability).

Efficient Data Issues Troubleshooting
In most organizations, when data issues arise, data engineers spend a lot of time
trying to figure out what the problem is, where it originated, and how to fix it. And
every step of the process takes a lot of time. With data observability, the time to
resolve (TTR) is much faster because there is visibility into the entire system thanks
to contextual observability, which provides information on the data itself and the
context of its usage. This enables data engineers to fix issues before they impact
downstream business users.

Preventing Data Issues
When implemented as part of the entire development lifecycle, including production,
data observability provides continuous validation of the health of the data and the
data ecosystem. Continuous validation can perceptibly improve the reliability of the
applications and prevent data issues, overall lowering the total cost of ownership.

Decentralized Data Quality Management
SLAs can manage and ensure data quality, just as they are used in IT DevOps to
ensure reliability and other key metrics. This new managing data quality requires
data observability, which on the one hand, can provide synchronized (near-real-time)
and continuous validation of the data, which further improves the efficiency of any
SLOs in place. But more importantly, on the other hand, data observability will
allow SLA and SLOs to be defined at the granularity of the usage, and the context
(the application, for example). This capability solves one of the most important
roadblocks of data quality management programs, the definition of SLAs by owners,
stewards, or SMEs who have a hard time defining a single set of constraints that will
supposedly meet all usage expectations. Hence, they cannot come up with a single
(central) set of SLAs as each use case is likely to perceive the SLAs differently. The
key difference with data SLAs is that they can take a very large number of forms that
feels quickly infinite; for example, you could have SLAs for the min representation,
number of nulls, number of categories, skewness, quantile 0.99, etc. for a single field

28 | Chapter 1: Introducing Data Observability

from a random CSV file. Hence, leveraging data observability to decentralize the
SLAs in a contextualized manner (the usage) is key to managing data quality and
defining a culture of accountability and clear roles and responsibilities.

Complementing Existing Data Governance Capabilities
Remember the DAMA-DMBKO2 data governance framework from earlier? Because
data observability is part of the architecture and surrounds all of the areas of data
governance, it provides visibility into all of the different components that interact at
the data level. This enables data teams to automatically create documentation using
the same kind of data, data storage, and data modeling and provides greater visibility
into the different data models that exist, what data has been published to the data
catalog, which analytics have been run on what data, and which master data was used.

The future and beyond
By better understanding the different use cases for data observability, you should now
be able to understand how data observability can be used to help optimize your data
systems as well as data teams.

In the coming chapters, I’ll go even deeper, detailing how to set up these use cases
and covering best practices to capture the information necessary for each use case in
the most efficient and valuable manner.

How data teams can leverage Data Observability now | 29

CHAPTER 2

Components of Data Observability

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 2nd chapter of the final book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
author at gobrien@oreilly.com.

As introduced in Chapter 1, data observability is an area of (IT) observability inter‐
secting its other areas such as applications or analytics. In this chapter, we will cover
how data observability, and its intersections, can be added to a system where data
must be observed.

As discussed in previous chapters, data observability gives observers a broader spec‐
trum of observations to interpret the internal state of the system by combining all
areas. However, this combination can become a challenge itself if some precautions
are not respected. This chapter will give you a deeper understanding of what observa‐
tions are and what they should contain.

We will first review the three channels where observers can access observable infor‐
mation to interpret the internal state of the system in relation with data. Then, we’ll
see how this observable information can be organized to simplify this interpretation,
its model. The chapter will conclude with the third component, that stretches the
observability beyond information generated by the system, but mixes it with expecta‐
tions observers may have about the internal state.

31

1 Cindy Sridharan, Distributed Systems Observability, O’Reilly 2018
2 Majors, Fong-Jones & Miranda: Observability Engineering, O’Reilly 2022

Channels of data observability information
The first component of data observability is the channels that convey observations to
the observer. There are three channels: logs, traces, and metrics. These channels are
common to all areas of observability and aren’t strictly linked to data observability.

Below are definitions of each of the three main channels of observability. You are
likely already familiar with these channels, but if not, there are hundreds of books
and blogs that delve deeper into defining them. If you do want to read more on the
topic, I recommend the book Distributed Systems Observability1, which dedicates all
of chapter 4 to defining these channels. I also recommend part two of Observability
Engineering2 as well as the REF.

Logs
Logs are the most common channel of observation produced by the IT system. They
can take several forms (e.g., line of free-text, JSON) and are intended to encapsulate
information about an event. A line of a log (typically logs are a stream of lines), is the
result of the act of logging.

In IT, logging is a decades-old best practice, especially in infrastructure, application,
and security. Logging has been used to not only debug but also optimize IT systems
or processes. There are even developed standards for logs, such as Syslog, that specify
the log structure and even allow heterogeneous infrastructures to be controlled by a
central system.

While logs are crucial to capture information about the behavior of a system, it is
difficult to use logs to recreate a multistep process. This is because logs comprise all
activities within the system and the logs of a process are likely interwoven with other
concurrent processes or scattered across multiple systems (e.g., distributed system,
service mesh).

Traces
Traces allow you to do what logs don’t—reconnect the dots of a process. Because
traces are a representation of the link that exists between all events of the same
process, they allow the whole context to be derived from logs efficiently. Each pair of
events, an operation, is a span which can be distributed across multiple servers.

Traces, with their spans, are an efficient way to follow operations across services and
servers, as information such as the server, the service, the timestamp of the event are

32 | Chapter 2: Components of Data Observability

https://learning.oreilly.com/library/view/distributed-systems-observability/9781492033431/ch04.html
https://learning.oreilly.com/library/view/observability-engineering/9781492076438/

conveyed. So an observer can easily browse the logs of the service, on the server, at
the given time to analyze the logs of the specific event for which they need to observe.

In practice, however, spans are also conveying logs that might be relevant for the
observer to analyze on the spot, instead of having to reconnect the trace information.
Even though observability systems allow integrations between traces and logs to
simplify further this process.

A different form of trace in the data and analytics context is the
data lineage (see section REF). Although data lineage is not strictly
speaking a trace (because it doesn’t connect events), the data line‐
age connects data sources to encode the provenance or the genera‐
tional model. However, in certain situations, data lineages can be
used to help troubleshoot a process or discover opportunities to
optimize.

The last channel of observations is metrics, which is closely connected to logs and
traces, as both can contain metrics. However, because of their simplicity, metrics have
a significant advantage over logs and traces.

Metrics
Every system state has some component that can be represented with numbers, and
these numbers change as the state changes. Metrics provide a source of information
that allows an observer not only to understand using factual information but also
leverage, relatively easily, mathematical methods to derive insight from even a large
number of metrics (e.g., the CPU load, the number of open files, the average amount
of rows, the minimum date).

Due to their numerical nature, they need to be recorded. This is why metrics were
once part of logs as well as present in traces. Because their usefulness is so straightfor‐
ward, over the years, we have seen standards to simplify the publishing or collection
of metrics independently of regular logs and traces.

Based on what I’ve described above, it may sound odd to talk about logs, metrics,
and traces as being produced by data (a number such as “3” cannot log, measure, or
trace anything, it is a number). This is why it is so vital to consider data observability
as an area that intersects others, such as applications and analytics, which implies
that the information produced by logs, metrics, and traces from several areas must be
connected. Let’s tackle this in the below section.

Channels of data observability information | 33

Observations model
Because observations can be captured from different channels, in different formats,
and are related to several areas of observability, it is important to model them, at least
minimally. In the following sections, I will present a model to encode the dimensions
covered by data observability that support the solution for the use cases presented in
Chapter 1.

I want to emphasize that the model I’m proposing is one I have seen work in many
projects and use cases. Though the model may change over time to include more
complexities or encode more relations, I intend to show you in detail how the obser‐
vations from the different areas can work together easily as long as the bridges across
them are well enough anticipated to avoid reverse engineering or approximations.

This model will, at the very least, give you a viable starting point to generate infor‐
mation that represents the state of the system you need to observe. However, you
can consider it as a core model which you could extend with additional, potentially
custom, needs. In chapter 3, I will explain the different strategies you can use to
generate automatically most of the information of the model, and, in chapter 4, the
associated ready to use recipes for several common data technologies (e.g., python
pandas, apache spark, SQL).

It is true that other areas of observability have not necessarily
introduced such a model yet, and this is limiting their ease of use.
Having logs, metrics, and traces coming from many infrastructures
or applications without a clear structure to recombine them (the
intersections) makes the process of generating insights about the
internal state cumbersome.
The information are therefore recombined in a best effort manner,
using a posteriori analyses which depends also on human interven‐
tion.
At the time of writing, Data Observability is raising out of the
water, therefore my intent here is to avoid repeating the mistakes
made in other areas, due to the youth of Observability, with the
introduction of a model to 1) accelerate its adoption 2) ensure its
ease-of-use.
Ideally, ISO specifications will be created, endorsed, and widely
supported, hopefully based on this model, in the meantime, let’s
use common sense.

In Figure 2-1 below, the model is designed as a graph to define the entities providing
some information about the state and how they are linked to each other. The links are
clearly identifying the intersections between data observability and other areas. For

34 | Chapter 2: Components of Data Observability

example, in the section below, you will learn that a data source (data observability) is
linked to a server where it is accessible (infrastructure observability), hence the link
itself is part of the intersection of these two areas.

Figure 2-1. Fig 2-1. Data Observability Core Model

The model presented in Figure 2-1 aims at structuring data observations to maximize
the overall interpretability for an external observer, and to provide a common lan‐
guage that can be used independently of the people, the time, and technologies.

To improve the readability of the model, it has been split into the three following
spaces:

• The physical space links observations with tangible entities. Even though a server•
might be virtual or a user is a system or applicative user, the physical space
represents a space that can be physically checked.

Observations model | 35

• The static space represents the entities that are changing relatively slowly in•
opposition to the dynamic space. It represents a state of the system that could be
built manually.

• The dynamic space is part of the system that is evolving or changing so fast•
that it cannot be consolidated, documented, or built manually. This is where
automation is not even a question–but a necessity.

Within each space, there are entities introduced to enable some observability. Let’s
go through each of these entities to understand what their purpose and how their
relation to other entities play a role in data observability.

Physical Space
In this section, I will cover the information in the Data Observability area that can
be considered tangible: the server and the user (or their virtual alternatives). Let’s get
started with the server first.

Server
The server is related to the machines which are running the IT system being
observed. It is meant to provide information about physical appliances. However,
in the era of cloud computing, it can also represent a container, a virtual machine, or
similar that opens the door to access infrastructure observations.

Because I am defining the core model, I kept the server simple without encoding
containers, virtual machines, and clusters for example – which can be extensions of
the model. However, the core information about the server must help the observer to
tap into other systems (e.g., Datadog) to analyze the infrastructure status.

To ensure this capability to the observer, the type of information the server must
convey includes IP, container id, machine name, or anything that can identify the
underlying infrastructure appropriately.

In [Link to Come], we’ll see an example of how and when the server helps the
observer.

User
The user is probably the easiest actionable information that can be used by an
observer to improve their understanding of a situation. This is because the user
mainly has knowledge and use of the system.

Like the server, the user can be a virtual abstraction, such as an identifier that
doesn’t hold personal information (e.g., GitHub account id) or a so-called system or
applicative user such as a root or spark-user, that gives the observer a hint on the

36 | Chapter 2: Components of Data Observability

impact of the user on the behavior of the system (e.g., security) or its liability (e.g.,
privacy).

In other words, the user is a way for the observer to connect the status of the user
with the purpose of observability.

In later sections related to the applications within a system I’ll discuss the advantages
of having such information on hand.

While I have limited the physical space to users and servers, we may think of other
elements such as GeoLocation that can also be part of the physical space.

However, I recommend starting with a simple model to get the core visibility needed,
then eventually growing it with additional use cases. That said, GeoLocation does fit
nicely in the user and infrastructure observability areas.

Now let’s address the static space, which includes most of the exclusive data observa‐
bility entities.

Static Space
Whilst the physical space allows the observer linking events about data to “things”
that can be accessed (even virtually). In this section, I introduce the static space that
gives the observer the ability to analyze the status of the system at rest, or where the
time has less influence than the physical space on its status (e.g., the existence of a
server, the code change of a user). The entities are related to data and applications,
and their structural evolutions.

Data Source
The data source provides information about what data exists and how it is used–
whether that’s a simple CSV file, Kafka topic, or a database table. The local file path,
the topic name, and the table name are the kinds of information that are typically part
of the data source.

The data source is present in the static space because data sources do not change
rapidly. Of course, files can be copied or moved to other locations, but the model
would consider the copied or moved files as new data sources. Renaming a table in
a database is also similar to moving it. It’s important to note though, that renaming
and moving data sources can have big consequences. Applications can fail as they
expect the data to be at a specific location, but the location may change in production
because the data has been moved (e.g., `mv`). In such cases, there will be several data
source entities, one for each data source location, as in fact moving a data source
from one location to another is copying then deleting it. This action of copy then
delete is actually a transformation which will itself be represented by its own entity,
the lineage introduced further in this chapter.

Observations model | 37

3 The name Schema relates to concepts such as XML-Schema, JSON-Schema and alike.
4 As in ontology’s concepts.

The data source is also an element of observation that resides in the main component
of the data observability area and is linked with the server, which is part of the
intersection with the infrastructure observability area.

Below are some use cases highlighting where you can gain observability of the data
source:

• Data migration to/from another server•
• Data duplication or redundancy•
• Data availability on a server (e.g., server migration or upgrade)•
• Data access (i.e. if a machine is physically connected to access the data)•

However, the data is not only a source, it is a repository for several types of informa‐
tion. In the next section, we’ll explore what this means.

Schema
While the data source introduced above provides information about how data can be
accessed, it doesn’t cover what type of information the user may find in the data.

The Schema entity provides visibility into the structure of the data source3. The
schema is an essential component of metadata (others would be definition, tags, etc)
and conveys the information about fields (or columns), potentially deep (embedded),
available in the data source. Each field of the schema has at least a name and an
associated type, which could be native (e.g., string, int, address) or conceptual4 (e.g.,
address, SKU_ID) or both.

Even though the schema is in the static world, it is still a changing entity, as a database
table can have columns added, removed, or renamed. However, the schema makes it
relatively manageable, although cumbersome, to keep track of the changes.

The schema is linked to the data source because it allows the observer to identify the
types of information available in a data source.

Because the schema of a data source is likely to change, the model can encode these
changes by keeping all versions of the schema in two different but non-exclusive
methods. Each method supports interesting use cases:

1. Each modification of the data source’s schema creates a new schema entity, along1.
with the time of change or version.

38 | Chapter 2: Components of Data Observability

2. Each consumer of the data source creates a schema entity related to its own usage2.
of the data source.

Interestingly, the schema, depending on the semantics presented above, is an obser‐
vation that is either part of the (a.) main component of data observability or (b.) an
intersection between data and analytics observability.

At this point in the model, we are capable of recovering decent visibility of the data.
However, we still lack a fair amount of information about how the data plays out with
the remainder of the system, especially applications and analytics. The remainder of
this section will focus on how to achieve data observability within these two areas.

Lineage
The Lineage entity, or more precisely the technical data lineage, is probably the most
difficult, and rarest, information to uncover. There is a lot of literature on how a
lineage can be used (REFs?)(I’ll list several at the end of this section), but there is little
about how to collect it concretely.

Lineage, literally the line+age, refers to the direct connections between data sources.
The lineage of a data source is therefore the set of direct upstream data sources and
their lineages. The technical data lineage can be either at the data source or field
level. Considering that the schema level is more complex to generate than at the data
source level as it provides information on how data sources’ schemas are connected
to each other. That results in a connected graph where each field of a data source has
its own lineage that connects it to the fields of the upstream data sources, as shown in
Figure 2-2.

Observations model | 39

Figure 2-2. Fig 2-2. Example of technical data lineage - in black = data source level,
yellow = field level

The connections between data sources are created using applications that execute
transformations of inputs (sources) into outputs (results). These transformations can
include:

• A SQL query issued by a Java web server transforming a table (input) into a•
JSON HTTP response (output)

• SQL generated by a reporting tool computing and presenting (output), a key•
performance indicator from a series table (inputs).

• A Spark job that creates a view in a data warehouse (output) from a number of•
Parquet files (inputs).

• A Kafka application using a streaming API that consumes a topic (source) and•
produces another topic (output).

• A machine learning script training a model (output) on a feature matrix created•
from a CSV file (input).

40 | Chapter 2: Components of Data Observability

Even a human copying figures from a sheet of paper (input) into an Excel sheet
(output) is a lineage.

The information contained in the lineage is essentially the mapping between input
and output data sources and/or schemas.

To encode this mapping with the data source and schema, the model presented in
Figure 2-1. shows that the lineage is linked to the schema which enables the following
use cases:

• [Use Case To Come]•
• [Use Case To Come]•

Although conceptually simple, the complexity of lineage is because it is:

• Cumbersome to document: All data sources must be documented, and each•
operation applied to all fields as well.

• Likely to change: even a simple modification of a SQL query will change the data•
lineage.

• Numerous: There are so many transformations happening continuously on a•
company’s data. Even a simple CRUD application is composed of many transfor‐
mations.

Despite these complexities, I have left lineage information as part of the static space
because a lineage relies on humans who transformed data to create their desired
output.

When considering lineage outside of the main component of data observability, we
can see that it also fits well with:

• Analytics observability: Lineage contains the structure of the analysis and how it•
is performed with data.

• User/purpose observability: Lineage encodes what can be achieved with the data•
sources.

• Application observability: Lineage is executed by an application, and a data•
application exists to execute lineage.

There’s a lot to explore when speaking about the contribution of lineages to user/
purpose observability and application observability, which we’ll explore further.

Application
The application gives access to another part of the data observability because it is
key to providing visibility of the data. In fact, the applications are at the center of all

Observations model | 41

information: they are the product of the user, the container of the analytics, the con‐
sumer and producer of data, and they run on infrastructure while also configuring or
implementing the security.

It is essential that information about the application is recorded so the observer can
understand which system is at play and the associated logic.

I tend to consider the application like a door to the other areas of observability,
because the application is relatively central to everything. In fact, referring to an
application can be as simple as:

• The groupId: artifactId of a Spark job•
• The path to a workbook in Tableau•
• The organization/module_name of a python script•
• The URN of a step in an orchestrator descriptor (e.g., GCP Workflow) schedul‐•

ing an SQL
• etc.•

Figure 2-1 shows that the Application does not refer to anything but still has the most
central position in the observation model, it must be executed. I will explain how this
is done in [Link to Come].

One could argue that lineage should be directly connected to the application. For
example SQL joining two tables in Oracle and creating a view in Snowflake is coded
in the application that will run it, hence creating a direct connection between both
entities.

However, I believe that this view couples Data and Application Observability areas
too strongly in the static space. There are several cumbersome instances where this
direct connection is completely inappropriate:

• Lineage modification: When the lineage is modified and a new lineage is created,•
the initial lineage is no longer part of the application. In this case, the lineage
should be connected with the Application Version (see below).

• Lineage is generated at runtime: When the lineage is generated at runtime, such•
as SQL created on the fly, all the SQL is not existing in the application until it
runs and is used. In this case, the lineage would be connected to the runtime
(execution) of the application (see further Application Execution in the Dynamic
Space).

Of course, the application is not disconnected from the lineage, it just won’t link
to it directly. Instead, it plays the role of a container by embedding most of the obser‐
vation model via the two components, the Application Repository and Application
Version.

42 | Chapter 2: Components of Data Observability

Application Repository
The Application Repository is often seen as the outlier in the model presented in
Figure 1., because it gives the information about where the source of the application
resides (e.g., source code, report configuration).

At first glance, there seems to be very little, or no connection to the data. However,
the information provided by the Application Repository is clearly intended to encode
the connection between Data Observability and Application Observability.

Because an Application can have its source moved around, the Application Repository
can represent its latest location (hopefully not several at the same time) and gives a
hint about where it resided in the past. This notion of temporality is something that I
have chosen to encode in a different entity–in the Application Version.

One of the primary usages of the repository is to give the observer the direct location
where they should be analyzing the system. For example, if there is an issue with
the generation of a data source by an application, knowing where the application
repository is tells the observer exactly where to look. However, they will also need to
know the version of the application to analyze the situation appropriately at the time
the issue happened, which is where Application Version is useful.

Application Version
Application Version is the final entity –and one of the most critical as it is the glue
between the other entities– in the static space. The Application Version is the entry
point in the Observations model that refers to the exact version an application was
running when an issue occurred with the data.

The version can be the version number (e.g., v1.0), a git hash (e.g.,
d670460b4b4aece5915caf5c68d12f560a9fe3e4), or even simply a timestamp (e.g.,
1652587507).

The version allows the observer to browse the history in the Application Repository
for the running Application under supervision. The version is also useful when
conducting root cause analysis. If the version is too old, it may indicate that the
application has not been (yet) updated. If the version is unknown/newer, it may
indicate that a bug in the logic has been introduced or an unknown transformation
has occurred.

You’ll see that the version is not directly connected to the lineage or any entity closer
to the core Data Observability entities (e.g., Data Source, Schema). Thus, to create a
bridge between Application and Data Observability, we must take into account what
is executed, read, transformed, and produced. This is what the Dynamic Space is for.

Observations model | 43

Dynamic Space
The Dynamic Space gives the observer the capability to leverage the behavior of the
system using the data. Its main purpose is to create visibility on what is called the
runtime, which is highly dependent on the status of the environment in which the
system is at play (i.e., its runtime context).

Also, the status of the environment is very sensitive to events that occur during
runtime, such as the data changing due to real-world events, the application being
killed due to a virtual machine reboot, etc. In other words, it is very dynamic and
unpredictable (at least deterministically), which is why I call it the Dynamic Space.

The composition of the Dynamic Space is described in the structure that follows,
starting with the Application Execution.

Application Execution
The Application Execution entity is key to providing the observer with information
about the application that is running and its use of data.

As previously noted, the application is the artifact that opens the door to greater visi‐
bility of other components within the observation model because its source describes
the analytics (e.g., lineage) using the data. By capturing the real runtime and its
execution, the application execution conveys information to the observer such as:

• An ID: This allows the observer to identify which Application Observability•
information is relevant to review (e.g., in an application logging system).

• The starting date: This allows the observer to know, for instance, the period•
during which the aforementioned information is relevant.

• The current configuration and how it’s changed across executions: This allows•
quick identification of incorrect settings.

The application execution directly connects to other entities, such as the application
(what), the server (where), and users (who). Because the observer is aware of the
application execution, and its connection to the behavior of some data usage within
the application (see Lineage Execution and Data Metrics), the observer will be able to:

• Connect to the server to analyze how it may influence the execution, or even•
better, use the server observability information to gain this visibility without
connecting to it (e.g., splunk, elk).

• Know exactly which applications are running or used to run on a server, and•
analyze its performance or load.

44 | Chapter 2: Components of Data Observability

• Identify easily and quickly who has performed the execution and thus is likely to•
be able to help describe the situation.

But what about the connection with the application? The model presented in Figure
1. doesn’t connect application execution to the application, because what is most
important for an observer to know about the execution of an application is its
version. Additionally, because the version refers to the source code, you can infer that
it is also referring to the application.

Having the information about which version is being executed is extremely powerful.
This information provides instantaneous insights, such as the version deployed is not
the latest, or which changes may have caused an issue (e.g., git diff).

Also consider that an application is likely to be executed in different versions across
different servers (e.g., environments), making the information described above even
more valuable.

Lineage Execution
The Lineage Execution entity is the less obvious, but also the most complex, to create
because it will likely have a large number of instances.

A Lineage Execution simply gives information about the execution of a lineage.
Therefore it can represent many different things, such as the execution of an SQL job,
a Python transformation, a copy command, machine learning training, etc. Lineage
Execution is meant to provide the observer with explicit information about how a
lineage behaves, including how often and what time connections to data sources
occur.

I wouldn’t say that a Lineage Execution conveys a lot of information intrinsically but
it is a keystone of the observation model. Without Lineage Execution, most of the
use cases of data observability presented in Chapter 1 are fantasy, or rely on best
effort reconciliation, which inevitably, leads to spurious correlations (mainly while
reconciling the Data and Application Observability areas).

A lineage execution is rich in information about its connections to other core entities
such as Lineage and Application Execution. If the link to Lineage is clear, then the
observer can tell which lineage is observable and can analyze the link further.

A lineage can’t be executed alone because it only represents the connection between
data sources (schemas) not how these connections are implemented. This informa‐
tion is available in the code, which can be observed using the Application Version.
For example, a data transformation could have been implemented in Spark RDD,
then in Spark DataFrame, then in Spark SQL, then a materialized view in Snowflake,
etc.

Observations model | 45

To understand how a lineage is executed, the observer has to use information about
the application execution. You can think of lineage execution as an internal program
that is started by the application, for example an application creates an entry in a table
when certain events are consumed from Kafka, then it executes the related lineage.

Moreover, an application is not limited to running a single lineage or a lineage only
once or even always the same lineages. Because of this diversity, giving the observer
visibility of this extreme (nondeterministic) situation is essential - as it is unthinkable
that this complexity could be held in a person’s brain.

Due to the centrality of Lineage Execution in the model, the observer gains a holistic
visibility (but not limited to) on:

• Which Lineage is executed by…•
• Which Version of…•
• Which Application in…•
• Which Repository consumes and produces…•
• Which Data Sources having…•
• Which Schema executed by…•
• Which User on…•
• Which Server.•

In graph lingo, we call this a traversal (collecting information while walking a graph).
I call this a freaking mind-blower.

But we can extend further this visibility with data metrics. One of the exciting things
about Data Metrics is that it has the potential to support data quality in a bottom-up,
scalable, and real time fashion.

Data Metrics
Data Metrics is the specification of Metrics in Observability. Data metrics is often
the most common suspect when discussing observability, as it is easily leveraged in
analysis to infer or predict (future or dependent) events - e.g., using their temporality
dependencies with multivariate time series analytics, Markov Chains, and the like.

In this context of Data Observability, I am focusing on the metrics that we can relate
directly to data, such as descriptive statistics (see below for more examples). However,
the data metrics entity comes with a subtlety that can have a huge impact on its
usefulness–the metrics are always attached to their analytical (e.g., transformations)
usage.

46 | Chapter 2: Components of Data Observability

5 The user Y ends up with the value 0, whilst the value of X has probably not changed a lot (especially if there
are many values).

The role of Data Metrics is to give information to the observer about what the
values of the data look like under certain conditions during their consumption or
production. There are at least three types of metrics that can be considered:

• Univariable: a metric related to one of the fields/columns of the observed data•
source. For example:
— Descriptive statistics of a column (e.g., min, max, nulls, levels)—
— Distribution (e.g., density, skewness)—
— Formula (e.g., the sum of squares, product)—

• Multivariable: the result of the combination of several fields/columns. For exam‐•
ple:
— Formula (e.g, the sum of the products of two fields).—
— Combined (e.g., Kolmogorov-Smirnov)—

• Extrinsic: the result of the aggregation of fields with fields from other data•
sources. This metric is tricky, and can even be considered a borderline metric, as
it is too close to a KPI or a result.

It is important to note that these metrics are not intended to replace the exploration
analysis required during the analytical phase of a data project (e.g., data science,
report). Those metrics are meant to allow the data to be understood in the context of
their usage, not before. In other words, the primary usage of the data metrics is not to
provide potential users with the initial insights they may find.

Nevertheless, data metrics are key for their potential users to gain trust in the
likelihood of the data being reliable, because if the data source is reliable for the
other usages, there is a good chance that their own usage of the data will also be
reliable. Remember that trust (particularly related to data quality) requires time and
is stronger when the reliability of the data is tied to real and understandable usages.

The likelihood in the sentence above is important because it is not
fully granted that if a data source is reliable for the applications
of user X, it will also be reliable for the applications of user Y.
Users X and Y are likely to use the data differently. For example,
imagine if user X computes the arithmetic mean of a field and user
Y its geometric mean. In this case, how would a single unexpected
zero impact each model5? And what if the data source is suddenly
empty, how would that also change the impact on the different use
cases6?

Observations model | 47

6 Boom… division by 0. At least, Y would get an error this time :-).

Hence, the data metrics must be linked to the data source it is exposing the behavior
(the correct term should be status) to the observer. In Figure 1, I show that data
metrics are linked to the Schema, this is because the metrics are highly dependent on
the fields present in the data source during its usage.

Finally, those metrics have to be linked to the usage of the data source, which is
represented by the Lineage Execution, which represents when the data sources com‐
bination is executed. This link comes with a never-seen-before power in observation
models–giving the observer the ability to understand the status of a data system.

Expectations
So far we have covered the types of information and the entities that give an observer
the ability to understand how data behaves in a system.

In this section, I am going to address the third component of data observability,
which pertains to creating visibility when the data behaves as expected. As you’ll see,
the expectations can come from different parts of the data ecosystem (e.g., users,
applications, …), and if expectations are visible to an observer, it gives the observer
key insights into how the observed status of the data compares to how it is expected
to behave.

By setting specific expectations, just as tests do in software development, the observer
can better understand the behavior of the data aligns with expectations. Moreover,
if some expectations are not met, the observer knows instantly what requires their
attention, as, again, tests reports indicate to software developers where they need to
focus their attention.

So they give essentially visibility about what the observer expect to happen, and
they represent either a positive or a negative event. For example, knowing that an
expectation, such as address always starts with the number, is true for 99% of the
entries, ensures that the data that can’t be used is only 1%, there is no incidents, it just
provides the observer two informations: the expectation itself and if it is true or false.
On the other hand, if a transformation is known to fail if a secondary is not complete,
in this case, when it becomes false, an incident can be clearly created, triggered and
an associated decision can be made (e.g., not executing the transformation at all).

When setting expectations, you will want to both set rules for how the data should
behave as well as detect anomalies. The next section will look at both of these areas
of Expectations as well as how an application can become its own observer and make
decisions regarding the status of the data’s behavior.

48 | Chapter 2: Components of Data Observability

Rules
A Rule is a common tool used in development and monitoring, it is basically a
function that evaluates the state of the data. If the current state passes the rule, it will
return a “true” response, and if it doesn’t, it will return a “false.” The function’s logic
is often quite simple, making it so that interpreting the result is easily relatable to the
inputs. For example, rules using a machine learning model to return the result are
closer to an anomaly detection than rules.

The Oxford’s definition of “rule” is One of a set of explicit or
understood regulations or principles governing conduct or proce‐
dure within a particular area of activity.
I don’t consider a trained machine learning model to be explicit,
even if a fully explainable one would be borderline.

Therefore, rules for data observability would be created using information conveyed
by Schema, Data Metrics, Lineage, etc. For example, if a Data Metric reports the
number of null values for the field age, a rule could be the number of null values
for age must be below 10, or less than 5%, or even can’t increase by more than 0.01%
between two executions of the same lineage. Another example of using the Schema
information would be the age field must be present and of X type of integer.

In fact, there are two categories of rules:

Single-state based
These rules only act on the information about the state of the system at a given
time, such as in the above example where null ages must be below 10. The state
information could also be combined to create intrinsic checks, such as comparing
the number of null values to the total count (e.g., no more than 10%).

Multi-state based
These rules require more than one state, such as the states of one or several
periods of time, continuous states, or a sampling. Multi-state based rules could
even include a list of states randomly drawn from the available states.

While the entities of the Observation Model are computed or extracted from available
information, the rules are less factual and require more insight to create. The insights
needed can come from several sources such as:

• Human knowledge and experience•
• History of the system•
• Similarities with other systems•

Let’s look at two ways to make rules.

Expectations | 49

7 Data at hand refers to the data available during the development phase.

Explicit Rules
Explicit rules are mainly created by users as a representation of assumptions that they
are building up and which they expect to hold true when their applications will run
and be used in production.

Those assumptions come mainly from the following channels.

Experience
A person’s experience with the data or the addressed use case is a great way to
generate rules because it is based on past experience or applied knowledge. I am
referring to intuition or gut feelings that are the result of years of experience
forming assumptions based on use cases or practical experience (e.g., network‐
ing, etc). However, it doesn’t mean that those assumptions are always reliable. A
person may be biased or misunderstand the full situation. Nevertheless, it is still
worth considering these types of “instinctual” assumptions as they are far better
than nothing and, more importantly, they express the expectations of the user.
Then, if those rules are not met, thanks to the observability of the system, the
team has the opportunity to perform an analysis to determine the rules’ validity
and potentially discard or adjust them.

Exploration
While working with the data to create the pipeline, the report, features, and other
types of data transformations, a person will be learning, or at least better under‐
stand, the data at hand7. Therefore assumptions will be formed and integrated
into the application based on these learnings. For example, if the data has no
duplicates or a turnover always above zero, if you turn them into assumptions,
you are likely not going to make them explicit or may not be specified in the
business logic to be implemented–although those assumptions are a great source
for rules. One way to help this process for developing rules could be to create
data profiles (using profilers). Profiling data generates a series of static rules
inferred from the data provided. However, these rules need to be used with
caution and reviewed thoroughly, leveraging the experience of the team to select
the most appropriate ones while avoiding introducing rules too close to the data
at hand and therefore likely to fail rapidly in production. The usage of data
profilers will be detailed further in Chapter 3.

Discovery
When application and data are in use, new cases can be discovered, such as
unknown-unknown (unexpected cases) or corner cases (not considered in the
business logic). When discovered, they are generally considered as incidents
that need to be analyzed, and most likely fixed. As discussed in Chapter 1,

50 | Chapter 2: Components of Data Observability

there are several processes that must be conducted such as root cause analysis,
troubleshooting, and impact analysis, to determine and fix the issue. Each of
these analyses present opportunities to introduce new rules discovered along the
pipeline.

It is also important to note that rules can be outdated as the world is constantly
changing (e.g., products are boycotted, laws are adapted, platforms are upgraded).
Consequently, the maintenance of these rules must be considered. I often encourage
teams to perform a quick review of the rules, especially for experience-based ones,
with every new version of the application using or producing the data at the very
least. Validating rules justly requires a simple feedback flow; however, there are
alternatives such as using assisted rules.

Assisted Rules
In the previous section, I introduced rules created entirely as the result of human
analysis. Here, I will introduce an alternative method, which allows rules to be
discovered.

Although rules cannot be based on non-explicit behavior, they can still be discovered
using simple analysis (e.g., heuristics) or even learned (e.g., association rule mining).
Such rules are created with the assistance of the observations. In this way, they are
“data-driven.”

The power of assisted rules is not only the capability to create new rules, but also to
update existing ones, even the explicit ones. Done efficiently, assisted rules lessen the
burden required to maintain rules in the long run.

The way to introduce assisted rules in a data observability system is by keeping
humans in the loop. Because rules are structurally comprehensive, they can be
reviewed by people who have the knowledge to tune, accept or reject them. Validating
rules in this manner is important to increase the level of trust in the rules, and
ultimately, the accuracy of the issues the rules detect. For example, an assistant system
can estimate (e.g., based on self-correlation) that the amount seems to take its value
around 19,945.62 with a standard deviation around 783.09, and therefore propose
a few rules such as following some distributions– which could also either estimated
from observations, or be an observation itself like the Kullback–Leibler divergence
with a few distributions a priori. The possibilities are limitless, as long as we have
enough observations at hand. That said, assisted rules should, over time, also leverage
knowledge accumulated during the discovery processes, that is the rules created after
the fact, which provides information on how to anticipate unknown-unknowns.

The opportunity to recommend and update rules is an advantage over automated
anomaly detection, which I will discuss in further detail. However, such anomaly
detection is, by definition, not involving the human much, the lack of control they
provide and their randomness are not generating the level of certainty about what

Expectations | 51

is under control. To increase and strengthen this feeling, which is the goal of Data
Observability, I will first tackle the relationship between rules and Service Level
Agreements (SLAs).

Connection with SLA/SLO
Service level agreements (SLAs) and service level objectives (SLOs) have been around
for quite some time to establish contracts and are a way to avoid subjective disputes
about the expected quality of the service. They help build a sustainable relationship
between producers or service providers with their consumers and their users.

These relationships also exist in the data world. Data teams are, in a service fashion,
producing data for dedicated use cases or to be made available for future consump‐
tion.

Thus, both data teams and data consumers/users have expectations, even if they are
unspoken, undocumented, and not intuitively shared when it comes to data. This has
created the issues I covered in the first chapter. SLAs and SLOs are good solutions to
eliminating many of these issues.

Service level agreements for data are contracts between the parties involved com‐
prised of expectations that can be met, and if not, a fine or other penalty is applied.
The fine/penalty is potentially as important as the length of time that elapses in which
the expectations are not met. Hence, operational metrics such as “time to detection”
and “time to resolve” are key for sustainable success.

To establish an SLA in data, it is a prerequisite to have the input of the users to make
sure the quality of the service will be high enough for them to actually use the data.
The more users taken into account in the SLA, the greater the service, the higher
the service levels, and the better the relationship is - as long as the associated cost to
ensure them is acceptable.

There are several complex facts that need to be considered when establishing the SLA
for data:

How to define the constraints
The user may have a hard time defining the important constraints due to the
number of possible constraints. Considering that each field in a data source can
have 10+ associated metrics (e.g., for age there can be min, max, mean, std but
also the quantiles, the estimated distribution, the null values, the negative ones,
etc).

Data usage will vary
Each user will have a different use case for the data, resulting in a different set of
expectations and thus constraints.

52 | Chapter 2: Components of Data Observability

High number of users
With self-serve data and analytics, the number of users is exploding, thus creat‐
ing more data use cases and more constraints.

This is where data observability is essential. Data observability observations can be
used as Service Level Indicators (SLIs) by providing enough information about both
the data and user behavior based on which rules can be identified, assisted, and
maintained.

Because both producer and consumer generate these observations, it becomes easier
to find a consensus as to which KPIs from the SLIs that should be used to determine
which SLAs are possible for the data team to meet. This will set the bar for the SLOs
across all SLAs while keeping the door open for other SLIs to be used later during
discovery of SLAs. In the meantime, both consumers and producers can use them as
SLOs (or simply informative, through a notification system for example).

Without data observability the scope is too vast for both parties, which prevents
them from committing to a set of expectations without sound evidence of their
effectiveness, and a way to improve over time.

Automatic anomaly detection
Rules are a powerful way to ensure data matches expectations in the context of where
the data is used. However, rules have a dependency on people to create and validate
them (at least, this is what I strongly recommend). This dependency, on people’s
time and availability, is undoubtedly a bottleneck to scale exponentially with data
validation. Although, companies reaching this stage need to have already reached a
high maturity level.

Also, assisted rules have a constraint on their structure as they must be explicit and
fully explainable, which may be a weakness over other more opaque solutions, such
as learning-based rules.

Considering that rules are meant to intercept expectations that are not met, another
method we haven’t discussed yet is automatic anomaly detection using the data
observability information available.

An anomaly is the state of the system which is different from the expected states. This
is the connection between expectations explicitly encoded as rules and expectations
implicitly discovered when unmet.

In our case, we have the states of the system corresponding to the history of the
data observability information based on the core observation model. Hence, those
states can also be seen as a stochastic process with many random but connected
(non independent) variables (each instance of the entities could be considered as a
variable).

Expectations | 53

Automatic anomaly detection, therefore, is the process of leveraging some of the
learning-based methods listed below to infer or predict when a state should be
considered an anomaly.

The methods that can be used nowadays are numerous and include machine learn‐
ing:

Supervised learning
This requires labeling data observability information (or the state itself) to work
properly. Hence, it requires time to collect enough data to train the algorithm as
well as time from the team to label (with high accuracy) the anomalies.

(semi-)Unsupervised learning or statistical analysis
This method can help identify or predict potential abnormal states. These states
can then be presented to the team for labeling. However, it is cumbersome to
label the predictions as anomalies automatically, even in extreme cases (e.g.,
outliers), without a second review.

Reinforcement learning and active learning
This method is quite advanced and still requires some time from the team. Not
only would agents need a lot of simulations to be validated, the active learning is
also essentially based on the human in the loop.

My intent is not to dig into each method, because it would require at least another
book and there are already enough papers and books on each of those topics. How‐
ever, let me emphasize that these methods, although capable of scaling in theory, still
come with downsides.

The cold start problem
In order for anomaly detection to be efficient, data and people are needed to
ensure the learning phases are reliable.

The black box worry
The above methods generate anomalies automatically but with little information
about the reasons. Consequently, the team must reconstruct the context and
understand the reasons.

The performance challenge
Anomaly detection can’t be 100% accurate. Therefore, their performance needs
to be under control to avoid alert-fatigue, where the team starts to ignore the
detected anomalies.

Coming back to the black box worry, it is important to note that nowadays a lot
of effort is put into making machine learning models explainable (which is, in my
humble opinion, a component of analytics observability). This is a challenge that is
not fully solved, especially for methods such as deep learning. However, keeping an

54 | Chapter 2: Components of Data Observability

eye on the evolution of this capability is a must to reduce the effect of the black box
worry.

I’ll wrap up this section on anomaly detection by also mentioning another method
rarely considered to address the black box worry, and moreover, provides an interest‐
ing mix of rules and anomaly detection – the learning of finite state machines. This
method could be promising under circumstances where data observability informa‐
tion is growing in volume, especially if the rules having triggered are also labelled as
true or false positives.

Prevent Garbage In - Garbage Out
If there is one cause for which the data community should be fighting it is the ban of
the “Garbage in-Garbage out” excuse. This common excuse is generally used as the
last line of defense when a data producer is being asked why the data is wrong. Often,
with too much confidence, the explanation provided is, “you know, my application
that produces the data works as expected, it follows the business logic requested, but
it was provided with garbage data, so of course, it produced garbage results.”

Although this excuse is used as an explanation or a way to waive the blame, it does
little to placate the user who still has no real solution at hand, so it is considered,
appropriately, as an excuse for not meeting data quality expectations.

In other words, it is a “dodge” that creates more harm than good. An opposing view
is that if an application can be aware garbage comes in, it should be forbidden to
generate garbage out. To do this the application needs to be able to

• Assess provided data as garbage•
• Qualify the created data as garbage•

The good news is that the third component of data observability, the expectations,
addresses these exact requirements.

With Data Observability implemented, here are the different scenarios that are possi‐
ble:

• Incoming data is classified as garbage before the application generates its results.•
The application can then either:
— Not proceed and avoid the garbage out—
— Make best efforts to clean the data, ensure the cleaning process is observable,—

and then proceed
• Incoming data is classified as garbage based on the qualification of the results.•

The application can then either:
— Roll back the data and log it—

Expectations | 55

— Log why the data is garbage, due to a posteriori discovery of garbage in—
— Like in the first case, try to clean the incoming data or its output, still ensuring—

those processes are observable

The logic described above could be implemented using the two, non-mutually exclu‐
sive procedures. The first is the use of conditions.

Pre/Post-Conditions
Conditional statements are commonly used in programming, such as when imple‐
menting an HTTP endpoint. For example, if the endpoint’s business logic is expecting
a JSON payload encoded in UTF-8 that contains a non-null integer age field under
the customer top-level field and these conditions are not met, the application can
decide to return an error to the client or be lenient for certain cases such as the
encoding by re-encoding before proceeding. Also, if the HTTP endpoint’s side-effect
is to update a table and then get the current state of the data, but it gets several rows
instead of one, it can take actions such as rollback, delete, or simply return an error
letting the client know about the potential garbage data it sent.

What I just described is something very natural for any programmer, it is even more
than a best practice, it is intuitively used. Therefore, the idea would be to simply also
use this pattern when creating data applications, pipelines, and so forth.

The interesting advantage of implementing pre and post conditions directly within
the data application is that it is well guarded without depending on other external
components to ensure its viability. Of course, the system used to build data needs to
allow such practices, which have not systematically been addressed in some systems,
especially the low-code no-code (e.g., ETL, reporting tools).

In recent years, not only because of the influence of DataOps,
which is a set of methods and tools to go to production faster, the
data system has reduced the entry-level required by people to use
the data. Therefore, the practice of setting of pre/post conditions is
not necessarily well-known or seems like an additional unnecessary
burden – as unit tests used to be considered in the early 2000s.
On the other side, the whole world is putting a significant focus on
the culture of accountability and respect for data.
In my opinion, accelerating time to production, lowering the skills,
and increasing the accountability are not playing well together,
unless the data systems allow the people to also mature and take
some responsibility. Some technologies have partially included this
concept, such as dbt, which includes data tests but with the cur‐
rent limitation that tests are not executed in production. This is
addressed further in this book (REF).

56 | Chapter 2: Components of Data Observability

8 https://en.wikipedia.org/wiki/Circuit_breaker
9 https://learning.oreilly.com/library/view/release-it/9781680500264/

10 https://martinfowler.com/bliki/CircuitBreaker.html
11 This is likely to result in troubles…

In the next section, I describe the circuit breakers, which conceptually are not so
different from the conditions described here, but structurally give an alternative when
the system does not (yet) have first-class support for the conditions.

Circuit Breaker
The circuit breaker originates from electrical circuits. In electrical systems, the circuit
breaker is a safety device designed to protect an electrical circuit from damage8. This
device closes the circuit to allow the electric current to flow until certain conditions
are met that could break the circuit. In such an instance, the device breaks the circuit
(opens it), forbidding the current to circulate until the underlying issues are fixed and
an action is taken to close the circuit again.

This idea has been reused in software architecture by Michael Nygard9 and supported
by Martin Fowler10, where an additional component wraps a function to prevent its
execution under certain conditions. The prevention is as simple as returning an error
directly when the wrapper is called and the circuit is open.

In a data pipeline, this may be more of an alternative to pre/post-conditions, espe‐
cially in the case where the user has no capabilities to introduce conditions into the
system used to create the pipeline, such as in low-code-no-code systems or restricted
interfaces (whether graphic or API). Therefore, the system has extra components in
the pipeline (circuit) to break it in case conditions are not met. In fact, implemented
as such, circuit breakers are similar to pre/post-conditions external to the applica‐
tions.

The nice thing with a circuit breaker is that they seem to be easier to add after the
fact (especially good for legacy systems). However, they do come with downsides. For
example, if the conditions depend on the steps before and after (e.g., case specific
SLA/Os, custom checks, …), then the circuit breaker is yet another application to
maintain and align with the steps’ logic11. Hence, circuit breakers are likely to be
present before and after each step, which makes the pipeline three times as long as it
would have been if the conditions had been added in the applications directly.

Expectations | 57

https://en.wikipedia.org/wiki/Circuit_breaker
https://learning.oreilly.com/library/view/release-it/9781680500264/
https://martinfowler.com/bliki/CircuitBreaker.html

About the Author
Andy Petrella has been in the data industry for almost 20 years, starting his career
as a software engineer and data miner in the GIS space. He has evangelized big
data for more than a decade, especially Apache Spark for which he created the
Spark-Notebook (that has 3100 stars on Github).

During his time evangelizing Spark and helping hundreds of companies in the US
and in EU work on their data pipelines and models, he has witnessed the lack of
visibility and control of data jobs after they are deployed in production.

Since 2015, he has been talking to tech and data-savvy people to build a sustainable
solution for this problem. That is: “how to make data observable” in a way that can be
adopted smoothly by any data practitioner.

Today, he is regularly invited to companies to educate their data teams, whilst run‐
ning Kensu, which has more than 50 years of total development time dedicated to
building the set tools to help data engineers and their peers to build trust in what they
deliver.

Also he is in ongoing talks with advocates such as Gartner to create a definition
of Data Observability that refers to all its important facets. Finally, he has written
books, blogs, slides, training materials, etc. since 2013, including many materials with
O’Reilly.

	Cover
	Kensu
	Copyright
	Table of Contents
	Chapter 1. Introducing Data Observability
	The evolution of data teams
	Challenges with current data management practices
	Effects of Data Governance at Scale

	Challenges of Scaling Data Teams
	Segregated Roles and Responsibilities and Organizational Complexity
	Anatomy of data issues and consequences
	Impact of data issues on data team’s dynamics
	Scaling AI Roadblocks

	Data Observability to the Rescue
	The areas of Observability

	How data teams can leverage Data Observability now

	Chapter 2. Components of Data Observability
	Channels of data observability information
	Logs
	Traces
	Metrics

	Observations model
	Physical Space
	Server
	User
	Static Space
	Dynamic Space

	Expectations
	Rules
	Automatic anomaly detection
	Prevent Garbage In - Garbage Out

	About the Author

